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1. INTRODUCTION

One of the most difficult aspects of ocean state esti-
mation is the prescription of the model forecast error co-
variances. The paucity of ocean observations limits our
ability to estimate the covariance structures from model-
data differences. In most practical applications, sim-
ple covariances are usually prescribed. Rarely are cross-
covariances between different model variables used, and,
for example, only the temperature field is analyzed in a
univariate Optimal Interpolation (Ol). However, it has
been found that a univariate Ol has a detrimental ef-
fect on the salinity and velocity fields of the model
(e.g., Troccoli et al, 2001). Apparently, in a sequen-
tial framework it is important to analyze temperature
and salinity together. Here an estimation of the model
error statistics is made by Monte-Carlo techniques from
an ensemble of model integrations. An important ad-
vantage of using an ensemble of ocean states is that
it provides a natural way to estimate cross-covariances
between the fields of different physical variables consti-
tuting the model state vector. This study gives the de-
tails of the two assimilation experiments different only in
the model error covariance specification, thus allowing
for comparison of the Ol performance with a traditional
Gaussian model of the error covariance and an empir-
ical multi-variate model. Robustness of the empirical
multi-variate error covariance estimate is explored.

2.  OI ASSIMILATION

In this study the Ol sequential data assimilation
scheme was used for the ocean state estimation. A
distinct feature of the Ol algorithm is that it uses fixed
forecast error covariance estimates.
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2.1 Model and Data

The Poseidon reduced-gravity quasi-isopycnal ocean
model, introduced by Schopf and Loughe (1995), pro-
vides realistic simulations of tropical Pacific climatol-
ogy and variability, as demonstrated, for example, in
Borovikov et al (2001). For this study the domain was
restricted to the Pacific Ocean (45°S to 65°N).

The TAO Array, consisting of more than 70
moored buoys spanning the equatorial Pacific
(http://www.pmel.noaa.gov/toga-tao/home.html)
measures subsurface temperature down to a depth
of 500 meters. By 1994 daily measurements became
available at approximately uniformly spaced locations
across the equatorial Pacific Ocean. These are the sole
source of data used in the assimilation experiments
presented here. The standard deviation of observation
measurement error is set to 0.5°C and the errors are
assumed to be uncorrelated in space and time. This
level of error is higher than the instrumental error in
order to account for model representation errors.

For cross-validation, we use the meridional sections
of temperature and salinity data from conductivity-
temperature-depth (CTD) instruments processed by
Johnson et al (2000).

3. FORECAST ERROR COVARIANCE MODELING

When attempting error covariance structure model-
ing, one is striving for both accuracy and efficiency.
These two goals may often be counteracting. With lim-
ited knowledge of the true nature of the model error
mainly due to the data sparsity, one often leans towards
the efficiency criterion when choosing a particular im-
plementation. We present here two different models for
the forecast error covariance structure, a simpler and
less computationally intensive and a more elaborate and
hopefully more accurate model.

3.1 Univariate Functional Error Covariance Model

In the simple model, the spatial structure of the tem-
perature (T) forecast error was assumed to be Gaussian



in all three dimensions with scales 15°, 4° and 50 m
in zonal, meridional and vertical directions correspond-
ingly. During each assimilation cycle a correction was
made only to the model temperature field. The other
variables adjusted according to the model’s response to
the temperature correction. The assimilation experi-
ment with this covariance model is denoted UOI.

3.2 Monte Carlo Method for Estimating Multivari-
ate Error Covariance

In hopes of obtaining a more realistic covariance
structure consistent with model dynamics, an applica-
tion of the Monte Carlo method was proposed, that
would use the variability from an ensemble of model in-
tegrations for a one-time estimate of the model forecast
error statistics. In spirit, this approach is similar to the
Ensemble Kalman Filter except that the error covari-
ance does not evolve with time. Since the rank of the
error covariance matrix P estimated using this method
is no greater than the Monte Carlo ensemble size, it can
be conveniently represented using a basis of empirical-
orthogonal functions (eofs).

Of the approximately 150 eofs that were resolved as
described below, the first 50 corresponding to the largest
eigenvalues were retained for the forecast error covari-
ance computation. The assimilation experiment with
this forecast error model is denoted MvOI.

3.2.1. Ensemble Generation

An ensemble of ocean states was generated by forc-
ing the ocean model with an ensemble of air-sea fluxes.
These fluxes were obtained from a series of integrations
of an atmospheric model forced by the same interannu-
ally varying sea surface temperatures (SST) and differ-
ing only in slight perturbations to the initial atmospheric
state. The interannual anomalies in surface stress and
heat flux components were added to climatological sea-
sonal forcing derived from observations. This approach
attributes all of the ocean model forecast error to uncer-
tainties in the longer time scale surface flux anomalies,
since differences between the ensemble members were
due to atmospheric internal variability. In all, 32 ocean
model runs were conducted. Five-day averages (pen-
tads) of the model fields were saved. They were subse-
quently interpolated to 11 depth levels, coincident with
the depths of the TAO observations. All the covariance
estimates have been made using these fields.

4. ROBUSTNESS OF THE MULTIVARIATE ERROR CO-
VARIANCE ESTIMATE

Initial experiments (not presented here) indicated that
single snapshots from the 32-members of the ensemble

yielded rather noisy covariance structures, particularly at
large lags. We decided to artificially expand the ensem-
ble size, by choosing snapshots from 5 years picked at
random from each ensemble member. With appropriate
means removed, the anomalies provided an ensemble 5
times the size of the number of individual simulations.

The procedure was repeated 10 times, and 10 sets
of eigenvectors were compared. If a statistically signifi-
cant difference were detected between these realizations
of P, the forecast error covariance matrix, it would in-
dicate the importance of interannual variations in the
model error variability. To understand whether the vari-
ous sets of eofs span the same dominant error subspace
we considered the projection of an arbitrary collection
of anomalous ocean states (prepared in the same way as
for P) onto a given set of eofs. If the residual remaining
after this projection is noise-like, the eofs captured the
significant information regarding the model error covari-
ance structure. An anomalous model ocean state vector
a can be expressed (i.e. projected) in terms of the eof
basis {a} as

a = X;a;0; + 6%. (1)

Here 6% is the residual due to the imperfect representa-
tion of the space containing a by the space spanned by
{a}. In the preparation of the ensemble set of anoma-
lous states a, care was taken not to include any sample
used for {a}. Thus, we obtain an ensemble of residuals
{d}. We then compute the eofs of this residual ensem-
ble to detect any modes of model error variability that
were missing in the {a}.

The results of 10 such tests are shown in figure 1:
the eigenvalues corresponding to the original (model er-
ror covariance) eofs ({a}) and the eigenvalues of the
covariance matrix of the residuals ({6}) corresponding
to an ensemble of residuals constructed for July. The
eigencurves for January appear very similar and are not
shown. The spectrum of the eigenvalues of {4} is flat,
which is characteristic of white noise. It appears that
at least 30 eofs have significant information about the
error structures and that the space spanned by these
eofs is fairly invariant.

5. EXPERIMENTAL RESULTS

The multivariate error statistics were validated in the
experiment that assimilated the TAO temperature data
from July 1996 to December 1998. The experimen-
tal setup is as following. The model was spun-up for
10 years and then run with time-dependent forcing for
1988-1998 in all the experiments. The initial conditions
and the forcing were identical in all the assimilation ex-
periments. In addition to the data assimilation runs, a
forced model integration without assimilation served as
a base-line for assessing the assimilation performance.



This run is referred to as the control run. In every as-
similation experiment, the daily subsurface temperature
data was assimilated once a day. To alleviate the effects
of the large shock on the model resulting from the inter-
mittent assimilation, the incremental update technique
was used, as described by Bloom et al (1996).
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Figure 1: Eigenvalues for several realizations of the ma-
trix P (marked {a}) and the eigenvalues for ensembles
of §’s - the residuals of the projections of an arbitrary
collection of anomalous ocean states onto a basis of
eofs. Only the first 75 of about 150 resolved eigenval-
ues are shown.

The longitude-time plot of the salinity field at 150 m
(figure 2) shows a quick deterioration of the structure in
UOI case. This is probably due to the fact that only the
temperature field is corrected in UOI. The model dy-
namical balances are so much perturbed that the model
is unable to restore them between assimilation cycles.
The MvOI corrects all the model fields based on their
empirical statistical relationship.

The assimilation is cross-validated by comparison of
monthly-averaged T and S with CTD survey observa-
tions presented by Johnson et al (2000). These data
have not been assimilated. The CTD sections spanned
the equator from 8°5—8°N. It is evident from the RMS
errors between the model runs and CTD data shown in
figure 3 that while both UOI and MvOI brought the
temperature field closer to the observed, only the MvOI
improves the salinity as well.
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Figure 2: Time series of monthly model salinity field
along the equator at 150 m. The average between 2°5-
2°N is shown. The top panel shows the control run,
the middle panel UOI, and the bottom panel, MvOl.
Contours greater than 35 psu are dashed.

6. CONCLUSIONS

A multivariate Ol algorithm, which allows for salin-
ity and current fields to be corrected as a result of the
temperature assimilation has been implemented. The
multivariate algorithm uses anisotropic, inhomogeneous
model error covariances obtained by a Monte Carlo sim-
ulation. In all, an ensemble of 160 members was con-
structed. The model error covariance matrix is naturally
represented by a set of eofs, fewer in number than the
ensemble size, allowing for an efficient analysis of its
properties. The multivariate Ol outperforms the uni-
variate assimilation. The robustness of such an esti-
mate was investigated and it was found that the model
error covariance structure does not exhibit significant
seasonal or interannual variations, although the latter
should be taken cautiously in the view of a relatively
short (15 years) analysis time interval. This result also
indirectly validates the underlying assumption of the Ol
algorithm that the forecast error covariance structure is
approximately constant.
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Figure 3: RMS difference between simulations and data
for temperature and salinity, averaged over all available
CTD profiles for the period 07/1996-12/1998 (Johnson
et al., 2000). Thin lines correspond to temperature and
thick lines to salinity. Salinity scale is at the top and
temperature scale is at the bottom of the plot.
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